
The Joint Use of the Breadth-First Search Strategy and the
Constraints Propagation in Smart Tables Handling

Alexander A. Zuenko
Kola Science Centre of the Russian Academy of Sciences, Institute for Informatics and Mathematical Modelling, Apatity,

Russia,
zuenko@iimm.ru

ABSTRACT
Recently, in modeling and handling the qualitative relations in
framework of Constraint Programming technology the so called
table constraints: compressed tables, basic smart tables, smart ta-
bles are increasingly used. Smart tables are a generalization of all
the types of table constraints listed above. In his earlier studies,
the author proposes to subdivide smart tables into the structures
of the C- and D-types. Smart tables of the C-type correspond to
disjunctive normal forms of logical expressions with elementary
unitary and binary predicates and smart tables of the D-type cor-
respond to conjunctive normal forms of such expressions. In the
Constraint Programming technology the conventional technique
of search is to combine constraint propagation with backtracking
depth-first search. In this study, a hybrid method is proposed that
combines the breadth-first search strategy and the author’s method
of table constraints propagation. The method is designed to obtain
all the solutions of the Constraint Satisfaction Problems modeled
by one or several smart tables of the D-type. The method is based
on the representation of a smart table of the D-type in the form
of a join of several orthogonalized smart-tables of the C-type. A
step of search consists of joining chosen pair of smart tables of the
C-type, followed by constraint propagation. When choosing smart
tables of the C-type for joining, the proposed heuristic allows us
to determine the order of joining the orthogonalized smart tables,
which helps to reduce the search space at the next steps of process-
ing. In constraints propagating, computation is accelerated due to
the reduction rules developed for the case of smart tables of the
C-type.

CCS CONCEPTS
•Mathematics of computing; •Discrete mathematics; • Com-
binatorics; • Combinatorial algorithms;

KEYWORDS
Constraint programming technology, Constraint satisfaction prob-
lem, Table constraint, Qualitative constraints

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487076

ACM Reference Format:
Alexander A. Zuenko. 2021. The Joint Use of the Breadth-First Search Strat-
egy and the Constraints Propagation in Smart Tables Handling. In The 5th
International Conference on Computer Science and Application Engineering
(CSAE 2021), October 19–21, 2021, Sanya, China. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3487075.3487076

1 INTRODUCTION
The methods of logical analysis are applied in many Artificial In-
telligence (AI) systems. They are intensively developed within the
framework of such an AI direction as Constraint Programming,
which is based on the declarative paradigm of knowledge repre-
sentation in the form of a Constraint Satisfaction Problem (CSP)
[1].

A Constraint Satisfaction Problem is described by a set of variables
X1, X2, . . ., Xn and a set of constraints C1, C2, . . ., Cm [2, 3]. Each
variable Xi has a non-empty domain Di. Each constraint Ci on a
subset of variables specifies allowable combinations of values for
this subset. The solution of the CSP is an assignment of values to
all variables {X1=v1, . . ., Xn=vn}, which satisfies all the constraints.

The paper considers the CSPs in which variables are discrete and
defined on the finite domains. The paper deals with the processing
of the so-called table constraints [4-14].

The simplest example of table constraints is relational tables. Any
finite predicate can be represented as relational tables containing a
truth set of the predicate. However, this explicit representation is
not expedient for many relations because it results in the exponen-
tial growth of the constraint satisfaction procedures complexity. So,
the attempts are taken up to develop a more compact table represen-
tation of qualitative relations, particularly, there were proposed the
varieties of table constraints, such as compressed tables and smart
tables [8-14].

The studies of prototypes have shown that the known types of
table constraints are, first of all, oriented at modeling disjunctive
normal forms of finite predicates and are in fact not suitable enough
to model conjunctive normal forms of logical formulas.

The author’s studies dealing with table constraints handling are
[15-17].

A detailed review of related research can be found in [17].
In his earlier study the author proposes a new type of table

constraints – smart tables of the D-type, which allows convenient
modeling and efficient processing of the production rules, some
types of logical expressions, as well as some types of global con-
straints [17]

In Constraint Programming the conventional technique of search
is to jointly use the constraint propagation methods and backtrack-
ing depth-first search strategy based on specialized heuristics to

https://doi.org/10.1145/3487075.3487076
https://doi.org/10.1145/3487075.3487076

CSAE 2021, October 19–21, 2021, Sanya, China Alexander Zuenko

select a variable and its value and reasonable algorithms to back-
track to the state that causes an invalid assignment. The feature of
backtracking depth-first search methods is to expand, step by step,
a partial solution to a complete one. If a partial solution is illegal
then backtrack is implemented and the previous partial solution is
expanded in an alternative direction.

The method proposed in the study combines breadth-first search
strategy and the author‘s method of table constraint propagation.
The method is designed to solve constraint satisfaction problems
represented by one or several smart tables of the D-type.

2 THE TABLE CONSTRAINTS FOR
KNOWLEDGE REPRESENTATION

The paper [17] considers the following types of table constraints:
typical relational table, compressed table, basic smart table, smart
table. Smart tables are a generalization of all the types of the table
constraints listed above. Smart tables are proposed to be subdivided
into the C- and D-type structures. Smart tables can contain in their
scheme not just simple but also composite attributes, the values of
which are relations from a predefined set.

Smart tables of the C-type correspond to disjunctive normal
forms (DNFs) of logical expressions with elementary unitary and
binary predicates and smart tables of the D-type correspond to
conjunctive normal forms (CNFs) of such expressions. The origin
of the terms smart table of the C-type and the D-type is due to the
fact that the former type of tables consists of smart tuples of the
C-type (from Conjunction), which are used to represent conjunc-
tions of unitary and binary predicates and the latter type of tables
consists of smart tuples of the D-type (from Disjunction), which
model disjunctions of elementary predicates.

In the paper two dummy components are used to represent the
content of smart tables: a complete component (denoted by “∗”) is
a set equal to the domain of the corresponding (according to its
location in the tuple) attribute; an empty set – �.

A smart table of the C-type is represented as a matrix enclosed
in square brackets.

Example 1. Let’s consider a constraint that describes the adaptable
conditions for the formation of the price of a product when solving the
problem of purchasing planning for a certain company. In a natural
language the constraint under consideration looks like: either the price
of product 1 is $ 35, while more than 15 units of product 1 and the
same number of units of product 2 must be purchased, or the price of
product 1 is $50, otherwise.

In terms of logical formulas this constraint can be expressed as
follows:

(X1 ≥ 15) ∧ (X1 = X2) ∧ (C = 35) ∨ (X1 < 15) ∧ (C = 50) ∨
∨(X1 , X2) ∧ (C = 50) ,

where:
X1 is the number of units of product 1, X1 ∈ [0; 111];
X2 is the number of units of product 2, X2 ∈ [0; 250];
C is product price, C ∈ {35, 50}.
Let’s represent the constraint as a smart table of the C-type:

T [X1,X2,C,X1X2] =

≥ 15 ∗ {35} =

< 15 ∗ {50} ∗

∗ ∗ {50} ,

 .

Each row of the smart table corresponds to some disjunct of the
above logical formula. The scheme of this smart table contains a
composite attribute X1X2 whose domain is a set of binary relations
{=,,}.

Example 1 shows that using smart tables of the C-type, it is
convenient to represent DNFs of the finite predicates (in particular,
a true set of finite predicates).

Using smart tables of the D-type the CNFs of the finite predicates
are modeled. The content of a smart tables of the D-type is enclosed
in inverted square brackets. Smart tables of the D-type make it easy
to calculate the complement of smart tables of the C-type relative
to the given universum: it is required to take the complement of
each component of the smart table. For example, the complement of
the smart table T [X1, X2, C, X1X2] is a smart table of the D-type:

T [X1,X2,C,X1X2] =

< 15 ∅ {50} ,
≥ 15 ∅ {35} ∅

∅ ∅ {35} =

 .
A smart table of the D-type T̄ can be represented as the following

logical expression:

[(X1 < 15) ∨ (X1 , X2) ∨ (C = 50)] ∧ [(X1 ≥ 15) ∨ (C = 35)]∧
∧ [(X1 = X2) ∨ (C = 35)],

Since smart tables are a “compressed” representation of multi-
place relations (typical tables), all the operations of relational al-
gebra can be applied to them. We have already considered the
application of the operation of complement earlier. Further compu-
tations will use the operation of a join of relations (⊕). Note that
when performing complement and a join operations, there is no
need to decompose smart tables into a set of elementary tuples.

Any smart table of the D-type can be represented as a join of sev-
eral diagonal smart tables of the C-type, each of which corresponds
to some row of the initial smart table of the D-type.

For example:

T [X1,X2,C,X1X2] =

< 15 ∅ {50} ,
≥ 15 ∅ {35} ∅

∅ ∅ {35} =

 =
=

< 15 ∗ ∗ ∗

∗ ∗ {50} ∗

∗ ∗ ∗ ,

 ⊕
[
≥ 15 ∗ ∗ ∗

∗ ∗ {35} ∗

]
⊕

⊕

[
∗ ∗ {35} ∗

∗ ∗ ∗ =

]
=

< 15 ∗ {35} ∗

≥ 15 ∗ {50} =

∗ ∗ {35} ,

 .
A diagonal smart table is a square smart table in which non-

dummy components can be located only on the main diagonal. In
the expression above, the rows containing empty components are
eliminated from the diagonal smart tables of the C-type.

The resulting smart table of the C-type describes in a “com-
pressed” form a true set of CNF which is presented by the initial
smart table of the D-type. Elementary substitutions are easy to ob-
tain by considering each row of smart table of the C-type separately.
Since the smart table under our consideration is a complement of
smart table T, it describes prohibited combinations of numbers of
products and their prices. In particular, from the first row of the
resulting smart table of the C-type it follows that product 1 cannot
be purchased at a price of $ 35 if its quantity is less 15 units.

The Joint Use of the Breadth-First Search Strategy and the Constraints Propagation in Smart Tables Handling CSAE 2021, October 19–21, 2021, Sanya, China

To illustrate how a join of smart tables of the C-type is performed,
consider the join of smart tables 2 and 3 in the expression above:

[
≥ 15 ∗ ∗ ∗

∗ ∗ {35} ∗

]
⊕

[
∗ ∗ {35} ∗

∗ ∗ ∗ =

]
=

≥ 15 ∗ {35} ∗

≥ 15 ∗ ∗ =

∗ ∗ {35} ∗

∗ ∗ {35} =

 .
When joining two smart tables of the C-type join of each row of
the first operand and each row of the second operand is performed.
When joining rows, for components-sets corresponding to common
attributes of both operands, an intersection operation is performed.

Thus, generally, the problem of finding all true sets of CNF of
the finite predicate is solved. However, in this form the solution of
the problem turns out to be too time-consuming. The methods for
reducing complexity of this transformation are briefly described
below.

One of the acceleration methods can be an orthogonalization
based on Poretsky ratio known from mathematical logic:

A ∨ B = A ∨AB.

In particular, the equations are true:[
≥ 15 ∗ ∗ ∗

∗ ∗ {35} ∗

]
=

[
≥ 15 ∗ ∗ ∗

< 15 ∗ {35} ∗

]
[
∗ ∗ {35} ∗

∗ ∗ ∗ =

]
=

[
∗ ∗ {35} ∗

∗ ∗ {50} =

]
.

Now let’s find join of these two orthogonalized smart tables of
the C-type:[
≥ 15 ∗ ∗ ∗

< 15 ∗ {35} ∗

]
⊕

[
∗ ∗ {35} ∗

∗ ∗ {50} =

]
=

≥ 15 ∗ {35} ∗

≥ 15 ∗ {50} =

< 15 ∗ {35} ∗

 .
As a result of joining the two orthogonalized smart tables under

consideration we obtained fewer rows in the resulting table then
when they were joined without preliminary orthogonalization.

In general, the order of joining diagonal smart tables of the C-
type significantly increases the speed of the computational process.

Note specially that:
≥ 15 ∗ {35} ∗

≥ 15 ∗ ∗ =

∗ ∗ {35} ∗

∗ ∗ {35} =

 =

≥ 15 ∗ {35} ∗

≥ 15 ∗ {50} =

< 15 ∗ {35} ∗

 .
These smart tables model one and the same set of elementary

tuples and are equivalent in this sense. In other words, one and the
same set of elementary tuples can be modeled by smart tables of
the C-type, which may look absolutely differently. Two equivalent
smart tables of the C-type can be obtained from one another as a
result of equivalent transformations. Some of these transformations
underlie the proposed method of inference on smart tables of the
C-type (the propagation method for the case of smart tables of
the C-type), the purpose of which is to reduce the search space in
polynomial time.

Below there are the reduction rules for the case of smart tables
of the C-type that allow us to remove some “redundant” values
from the attribute domains, components of smart tables and also
exclude entire rows and columns from consideration.

Statement 1’ (S1’). If all the rows of the smart table of the C-type
are empty, that is, they contain at least one empty component each,
then the C-system is empty (the corresponding CSP is inconsistent).
Statement 2’ (S2’). If all the components of some attribute (column
of the smart table of theC-type) are complete, then this attribute can
be removed from the smart table of the C-type (all the components
placed in the corresponding column are removed) and the pair
“removing attribute – its domain” is stored in the partial solution
vector.
Statement 3’ (S3’). If a domain of some attribute of smart table of
the C-type contains values that do not occur in the corresponding
column, then these values are removed from this domain.
Statement 4’ (S4’). If a row of a smart table of the C-type contains
at least one empty component (the row is empty), then the row is
removed from smart table.
Statement 5’ (S5’). If a component of some attribute of a smart table
of the C-type contains a value that does not belong to the corre-
sponding domain, then this value is removed from the component.
Statement 6’ (S6’). If in a row of a smart table of the C-type a compo-
nent corresponding to a simple attribute that forms some composite
attribute is reduced, then in this row the component corresponding
to the mentioned composite attribute must be modified, taking into
account the new value of the component of the simple attribute.
Statement 7’ (S7’). If in a row of a smart table of the C-type, a
component corresponding to a composite attribute is reduced then
in this row the components of corresponding simple attributes must
be modified, taking into account the newly obtained component of
a composite attribute.
Statement 8’ (S8’). If in a smart table of the C-type the domain of
a simple attribute that forms some composite attribute is reduced,
then the domain of the composite attribute must be modified, taking
into account the new domain of the simple attribute.
Statement 9’ (S9’). If the domain of a composite attribute is reduced,
then the domains of corresponding simple attributes also must
be modified, taking into account the newly obtained domain of a
composite attribute.

Similar reduction rules for the case of the D-type smart tables are
given in [17]. Next, we proceed to the description of the proposed
method.

3 THE METHOD PROPOSED
In CSPs, where it is necessary to reach all the solutions, it is reason-
able to jointly use the breadth-first search strategy and the author’s
methods of non-numerical constraints propagation. In the present
studies, a case is considered when the CSP is represented in a form
of a single smart table of the D-type or several smart tables of the
D-type. The hybrid method proposed is based on the representa-
tion of the smart table of the D-type in a form of a join of several
orthogonalized smart tables of the C-type. We call the smart tables
of the C-type an orthogonalized smart tables of the C-type, whose
tuples (rows) are orthogonal pair wise. The method allows us to
determine the order of joining orthogonalized smart tables, which
would contribute to reducing the computation. The problem is to
some extent similar to the problem of multiplication of numerical
matrices where the arrangement of brackets in the expression, i.e.

CSAE 2021, October 19–21, 2021, Sanya, China Alexander Zuenko

determination of the order of matrices multiplication, significantly
effects the total number of the operations.

At each step of search a pair of smart tables of the C-type is
proposed to be chosen so that to reduce the search space as much
as possible. The following heuristic is used in choosing the smart
tables for joining:

J (K[S],T [R]) = |K[S]| × |T [R]| × |S\R | × |R\S |,

where: K[S] – is the first of the smart tables pair chosen; T [R] – is
the second of the smart tables pair chosen at the current step of
search; S – the scheme (a set of attributes) of the smart table of the C-
type K ; R – the scheme (a set of attributes) of the smart table of the
C-type T ; |K[S]| is the number of (elementary or non-elementary)
tuples of the given smart table of the C-type K[S].

This heuristic is borrowed from [18], where it is applied to join
typical relational tables.

After joining the pair of the smart tables of the C-type, it may
turn out that some values of the corresponding variable are absent
in one of the columns of the resulting smart table of the C-type.
Thus, after each joining, it is necessary to carry out the constraints
propagation, applying statements S1’-S8’, i.e. the reduction rules
described earlier for the case of the smart tables of the C-type.
When the “redundant” values are removed, all the smart tables are
still orthogonalized.

The values of the function J(K[S], T [R]) can differ significantly
depending on the interpretation of the concept “tuple of smart table
of the C-type”. The following can be considered as tuples of a smart
table of the C-type: a) smart tuples (rows of the smart table); b)
elementary tuples obtained when transforming a smart table into a
typical relational table.

When considering case b), it should be taken into account that
if the diagonal smart table of the C-type is orthogonalized, then it
is easy to calculate the cardinality of the set of elementary tuples
of the given smart table without decomposing it into a typical
relational table. To do that, the cardinalities of all the non-empty
components placed in a row should be multiplied, and the results
of multiplications obtained for each row, should be summed.

Let’s set the task to estimate which of the interpretations of the
concept ”tuple of smart table of the C-type” allows us to better
choose a pair of joined smart tables at the step of search.

Example 2. Consider the peculiarities of the method application
on the example of the smart table of the D-type. So, we have the smart
table specified in S=X1×X2×X3×X4={1, 2, 3, 4, 5}4:

1
2
3
4
5
6
7
8
9

{2, 3} ∅ {1, 2, 3} ∅

{2} {1, 2, 5} {4} ∅

∅ {1, 2, 4} {3, 4} {3, 5}
{1, 2} {3, 4, 5} ∅ {3}
∅ ∅ {1, 5} {4}
∅ {2, 3} {1, 2, 3} {1}

{2, 4, 5} ∅ {3, 5} {3, 5}
{5} ∅ {2, 3, 4} {1, 3, 4}
{1, 3} ∅ {4, 5} ∅

.

This smart table of the D-type can be represented as a joining
the following smart tables of the C-type:

K1 [X1X3] ⊕ K2 [X1X2X3] ⊕ K3 [X2X3X4] ⊕
⊕K4 [X1X2X4] ⊕ K5 [X3X4] ⊕ K6 [X2X3X4] ⊕
⊕K7 [X1X3X4] ⊕ K8 [X1X3X4] ⊕ K9 [X1X3] ,

where:

K1 [X1X3] =

[
{2, 3} ∗

{1, 4, 5} {1, 2, 3}

]
,

K2 [X1X2X3] =

{2} ∗ ∗

{1, 3, 4, 5} {1, 2, 5} ∗

{1, 3, 4, 5} {3, 4} {4}

 ,
K3 [X2X3X4] =

{1, 2, 4} ∗ ∗

{3, 5} {3, 4} ∗

{3, 5} {1, 2, 5} {3, 5}

 ,
K4 [X1X2X4] =

{1, 2} ∗ ∗

{3, 4, 5} {3, 4, 5} ∗

{3, 4, 5} {1, 2} {3}

 ,
K5 [X3X4] =

[
{1, 5} ∗

{2, 3, 4} {4}

]
,

K6 [X2X3X4] =

{2, 3} ∗ ∗

{1, 4, 5} {1, 2, 3} ∗

{1, 4, 5} {4, 5} {1}

 ,
K7 [X1X3X4] =

{2, 4, 5} ∗ ∗

{1, 3} {3, 5} ∗

{1, 3} {2, 4, 5} {3, 5}

 ,
K8 [X1X3X4] =

{5} ∗ ∗

{1, 2, 3, 4} {2, 3, 4} ∗

{1, 2, 3, 4} {1, 5} {1, 3, 4}

 ,
K9 [X1X3] =

[
{1, 3} ∗

{2, 4, 5} {4, 5}

]
.

In this case, an orthogonalization is made which is aimed at calcu-
lation of elementary tuples in each of the smart table of the C-type
enumerated.

The elementary step of the search is in that, at first, joining two
smart tables of the C-type is implemented. The two smart tables of
the C-type are chosen in accordance with the heuristic mentioned
above. Then the constraints propagation procedure is carried out.

For the two mentioned interpretations of the concept of “tuple
of a smart table of the C-type”, the values of the heuristic function
for each pair of smart tables joined at the first step of the search
are presented in Tables 1 and 2. The actual number of elementary
tuples that is obtained when joining a pair of smart tables at the
first step of the search is shown in Table 3.

Analyzing Tables 1 and 2, one can conclude that with both inter-
pretations of the concept “tuple of a smart table of the C-type”, the
value of the heuristic function “null” corresponds to the same pairs
of joined smart tables. However, the calculation of Table 1 requires
much more arithmetic operations. One more argument in favor of
using the number of its smart tuples as the cardinality of a smart
table, rather than elementary tuples, is that the minimum (maxi-
mum) value in Table 2 corresponds to the minimum (maximum)
value in Table 3.

The Joint Use of the Breadth-First Search Strategy and the Constraints Propagation in Smart Tables Handling CSAE 2021, October 19–21, 2021, Sanya, China

Table 1: The Values of the Heuristic Function at the First Step of the Search for the Case with Elementary Tuples

K1 K2 K3 K4 K5 K6 K7 K8

K2 0
K3 4066 9951
K4 3838 9393 10807
K5 247 2418 0 2626
K6 3838 9393 0 10201 0
K7 0 9951 11449 10807 0 10807
K8 0 10137 11663 11009 0 11009 0
K9 0 0 3424 3232 208 3232 0 0

Table 2: The Values of the Heuristic Function at the First Step of the Search for the Case with Smart Tuples

K1 K2 K3 K4 K5 K6 K7 K8 K9

K1
K2 0
K3 12 9
K4 12 9 9
K5 4 12 0 12
K6 12 9 0 9 0
K7 0 9 9 9 0 9
K8 0 9 9 9 0 9 0
K9 0 0 12 12 4 12 0 0

Table 3: The Actual Number of Elementary Tuples That Is Obtained When Joining a Pair of Smart Tables at the First Step of
the Search

K1 K2 K3 K4 K5 K6 K7 K8 K9

K1
K2 69
K3 514 411
K4 269 345 415
K5 47 229 51 259
K6 601 361 85 403 50
K7 78 399 469 433 55 415
K8 83 424 491 441 49 449 93
K9 10 60 346 328 44 280 62 68

Applying the heuristic proposed above, choose for joining the
following smart tables: K1[X1X3] and K9[X1X3] having the same
schemes. Calculate the result of their joining:

K1 [X1X3] ⊕ K9 [X1X3] =[
{2, 3} ∗

{1, 4, 5} {1, 2, 3}

]
⊕

[
{1, 3} ∗

{2, 4, 5} {4, 5}

]
=

{3} ∗

{2} {4, 5}
{1} {1, 2, 3}

 .
Then, according to Statements S1’-S8’, one can reduce the domain
of variable X1 to the set {1, 2, 3}, “having summed” the values of
the first column of the smart table K1[X1X3] ⊕ K9[X1X3]. Now,
one should “tune” the rest smart tables of the C-type (K1 – K8) to a
new domain of variable X1. At the current stage of search we have:

Current domains: X1 – {1, 2, 3}, X2 – {1, 2, 3, 4, 5}, X3 – {1, 2, 3, 4,
5}, X4 – {1, 2, 3, 4, 5}.

Current constraints:

K1 [X1X3] ⊕ K9 [X1X3] =

{3} ∗

{2} {4, 5}
{1} {1, 2, 3}

 ,
K2 [X1X2X3] =

{2} ∗ ∗

{1, 3} {1, 2, 5} ∗

{1, 3} {3, 4} {4}

 ,
K3 [X2X3X4] =

{1, 2} ∗ ∗

{3} {3, 4} ∗

{3} {1, 2, 5} {3, 5}

 ,

CSAE 2021, October 19–21, 2021, Sanya, China Alexander Zuenko

K4 [X1X2X4] =

{1, 2} ∗ ∗

{3} {3, 4, 5} ∗

{3} {1, 2} {3}

 ,
K5 [X3X4] =

[
{1, } ∗

{2, 3} {4}

]
,

K6 [X2X3X4] =

{2, 3} ∗ ∗

{1} {1, 2, 3} ∗

{1} {4, 5} {1}

 ,
K7 [X1X3X4] =

{2} ∗ ∗

{1, 3} {3, 5} ∗

{1, 3} {2, 4, 5} {3, 5}

 ,
K8 [X1X3X4] =

[
{1, 2, 3} {2, 3, 4} ∗

{1, 2, 3} {1, 5} {1, 3, 4}

]
.

In the smart tables K2-K7, the first columns were corrected. In
the smart table K8 the first row was removed. Further steps of the
search process are carried out by analogy.

4 CONCLUSIONS
The paper proposes to reduce the search of the solutions of non-
numerical CSPs, presented by smart-tables of the D-type, to deter-
mination of the order of joining several smart tables of the C-type.
A heuristic is proposed for choosing a pair of joined smart tables of
the C-type at each step of search. Two variants of using this heuris-
tic are studied. A conclusion is made that it is reasonable to use the
number of smart tuples as the cardinality of a smart table, rather
than the number of elementary tuples of the relation. For the first
time, reduction rules are proposed for the case of smart tables of the
C-type. The developed method makes it possible to efficiently find
all the solutions of non-numerical CSPs and it is easily adapted to
solve optimization problems. The time complexity of backtracking
depth-first search is estimated as a product of domains of all the
variables. The time complexity of the proposed method is estimated
as a product in which each multiplier is equal to the number of
non-empty components of the corresponding row of the initial
smart table of the D-type. The proposed method gives a significant
gain in the case of a large number of variables, a large size of their
domains and a relatively small number of rows of a smart table.
The method is focused on application in intelligent systems dealing
with poorly formalized subject domains. It is planned to study the
influence of the order of orthogonalization of smart tables columns
on the speed of computations when joining a pair of the C-type
smart tables.

ACKNOWLEDGMENTS
The reported study was funded by RFBR, project numbers 19-07-
00359-a, 20-07-00708-a.

REFERENCES
[1] S Russel and P Norvig (2010). Artificial Intelligence: A Modern Approach. 3rd

edition. Prentice Hall, 1132 p.
[2] A Mackworth (1977). Consistency in networks of relations. Artificial Intelligence,

8(1), 99-118. DOI: 10.1016/0004-3702(77)90007-8.
[3] R Bartak (1999). Constraint Programming: In Pursuit of the Holy Grail. Proceed-

ings of the Week of Doctoral Students (WDS99), 555-564.
[4] B Charlier, M Khong, C Lecoutre and Y Deville (2017). Automatic Synthesis of

Smart Table Constraints by Abstraction of Table Constraints. Proceedings of
IJCAI 2017, 681-687. DOI: https://doi.org/10.24963/ijcai.2017/95.

[5] G Audemard, C Lecoutre and M Maamar (2020). Segmented Tables: An Efficient
Modeling Tool for Constraint Reasoning. ECAI 2020, 315-322.

[6] R Yap, and WWang (2020). Generalized Arc Consistency Algorithms for Table
Constraints: A Summary of Algorithmic Ideas. AAAI 2020, 13590-13597. DOI:
https://doi.org/10.1609/aaai.v34i09.7086.

[7] G Perez and J C Regin (2014). Improving GAC-4 for table andMDD constraints. CP
2014. LNCS, 8656, 606-621. DOI: http://dx.doi.org/10.1007/978-3-319-10428-7_44.

[8] H Verhaeghe, C Lecoutre and P Schaus (2017). Extending compact-table to
negative and short tables. Proceedings of AAAI 17, 3951-3957. DOI: https:
//dl.acm.org/doi/abs/10.5555/3298023.3298142.

[9] L Ingmar and C Schulte (2018) Making Compact-Table Compact. CP 2018, Lecture
Notes in Computer Science, 11008, 210-218. DOI: https://doi.org/10.1007/978-3-
319-98334-9_14.

[10] K Cheng and R Yap (2010). An MDD-based generalized arc consistency algo-
rithm for positive and negative table constraints and some global constraints.
Constraints, 15(2), 265-304. DOI: http://dx.doi.org/10.1007/s10601-009-9087-y.

[11] C Jefferson and P Nightingale (2013). Extending simple tabular reduction with
short supports. Proceedings of IJCAI 2013, 573-579.

[12] J Mairy, Y Deville and C Lecoutre (2015). The Smart Table Constraint. Integration
of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture
Notes in Computer Science, 9075, 271-287. DOI: http://dx.doi.org/10.1007/978-3-
319-18008-3_19.

[13] H Verhaeghe, C Lecoutre, Y Deville and P Schaus (2017). Extending Compact-
Table to Basic Smart Tables. Principles and Practice of Constraint Programming.
CP 2017, Lecture Notes in Computer Science, 10416, 297-307. DOI: http://dx.doi.
org/10.1007/978-3-319-66158-2_19.

[14] A Schneider and B Choueiry (2018) PW-CT: Extending Compact-Table to Enforce
Pairwise Consistency on Table Constraints. CP 2018, Lecture Notes in Computer
Science, 11008, 345-361. DOI: https://doi.org/10.1007/978-3-319-98334-9_23.

[15] A Zuenko and A Fridman (2009). Development of n-tuple algebra for logical
analysis of databases with the use of two-place predicates. Journal of Computer
and Systems Sciences International, 48(2), 254-261. DOI: http://dx.doi.org/10.
1134/S1064230709020099.

[16] A Zuenko (2018). Local Search in Solution of Constraint Satisfaction Problems
Represented by Non-Numerical Matrices. Proceedings of the 2nd International
Conference on Computer Science and Application Engineering (CSAE ’18), 45.
DOI: 10.1145/3207677.3277959

[17] A Zuenko (2020). Representation and Processing of Qualitative Constraints Using
a New Type of Smart Tables. Proceedings of the 4th International Conference
on Computer Science and Application Engineering (CSAE ’20), 45, 1–7, DOI:
https://doi.org/10.1145/3424978.3425023.

[18] G Møller (1995). On the Technology of Array-Based Logic. Ph. D. thesis, http:
//www.arraytechnology.com/documents/lic.pdf.

https://doi.org/10.24963/ijcai.2017/95
https://doi.org/10.1609/aaai.v34i09.7086
http://dx.doi.org/10.1007/978-3-319-10428-7_44
https://dl.acm.org/doi/abs/10.5555/3298023.3298142
https://dl.acm.org/doi/abs/10.5555/3298023.3298142
https://doi.org/10.1007/978-3-319-98334-9_14
https://doi.org/10.1007/978-3-319-98334-9_14
http://dx.doi.org/10.1007/s10601-009-9087-y
http://dx.doi.org/10.1007/978-3-319-18008-3_19
http://dx.doi.org/10.1007/978-3-319-18008-3_19
http://dx.doi.org/10.1007/978-3-319-66158-2_19
http://dx.doi.org/10.1007/978-3-319-66158-2_19
https://doi.org/10.1007/978-3-319-98334-9_23
http://dx.doi.org/10.1134/S1064230709020099
http://dx.doi.org/10.1134/S1064230709020099
https://doi.org/10.1145/3424978.3425023.
http://www.arraytechnology.com/documents/lic.pdf
http://www.arraytechnology.com/documents/lic.pdf

	Abstract
	1 INTRODUCTION
	2 THE TABLE CONSTRAINTS FOR KNOWLEDGE REPRESENTATION
	3 THE METHOD PROPOSED
	4 CONCLUSIONS
	Acknowledgments
	References

